请选择 进入手机版 | 继续访问电脑版
游客您好
第三方账号登陆
  • 点击联系客服

    在线时间:8:00-16:00

    客服电话

    17712677918

    电子邮件

    857020071@qq.com
  • 扫描二维码

    关注微信公众号

推荐阅读
vgongye 版主
未知星球 | 未知职业
  • 关注0
  • 粉丝0
  • 帖子97
热议话题
Node.js 简介
2021-08-28 0
Node.js 是一个开源与跨平台的 JavaScript 运行时环境。 它是一个可用于几乎任何项目
精选帖子

工业APP是释放工业大数据价值的方式

[复制链接]
vgongye 发表于 2020-6-26 10:36:57 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题
以物联网、大数据、云计算等为代表的新一轮科技革命席卷全球,正在构筑信息互通、资源共享、能力协同、开放合作的制造业新体系,为制造业创新和发展提供了极大的想象空间。工业互联网的发展驱动制造业迈向转型升级的新阶段——数据驱动的新阶段,这是新的技术条件下制造业生产全流程、全产业链、产品全生命周期的数据可获取、可分析、可执行的必然结果,也是制造业隐性知识显性化不断取得突破的内在要求。

一、工业大数据的来源

工业大数据来源主要有三个方面:一是企业经营管理数据;一是机器设备数据;一是来源于企业外部数据。

1、经营管理数据是指传统工业自动化控制与信息化系统中产生的数据, 如 ERP、MES 等。

2、机器设备数据是来源于工业生产线设备、机器、产品等方面的数据,多由传感器、设备仪器仪表进行采集产生。

3、外部数据是指来源于工厂外部的数据,主要包括来自互联网的市场、环境、客户、 政 府 、供应链等外部环境的信息和数据。

二、工业大数据的特征

工业大数据具有4V特性,即具有大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)。换句话说,只有具备这些特点的数据,才是大数据。



三、工业大数据的采集和处理



互联网的数据主要来自于互联网用户和服务器等网络设备,主要是大量的文本数据、社交数据以及多媒体数据等,而工业数据主要来源于机器设备数据、工业信息化数据和产业链相关数据。

工业大数据来源复杂,采集的手段也多样。工业领域的设备光通讯协议都让会让人眼花目眩。下图是网上找来的一张工业协议的汇总图,但这仅仅是众多协议中的一部分:


工业大数据,从特征来看,可以分为结构化、半结构化或非结构化等几种类型;而且有大量的不可用的数据。数据采集只是万里长征的第一步。

采集来的数据还需要经过数据ETL的数据处理过程,即数据的抽取(Extract)、数据的清洗(Cleaning)、数字的转换(Transform)、数字的装载(Load)。数据的处理过程如下图: